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I. Introduction

In this note we consider one aspect (arguments for convergence and
stability via a variational approach) of least-squares formulations of parameter
estimation problems for partial differential equations. Conceptually, one has a
dynamical model with "states" u = u(t,x), 0 €t ¢ T, x € O, and paramecters
g = q(t,x) in some admissible set Q. Given observations or data, =z e Z.
of some type (eg., z = {Gij} as observations {u(ti,xj))), onc wishes to
dctermine paramecters q that give a best fit of the model to the data. That
is, onc has the constrained optimization problem: From an admissible
parameter set  Q, choose a paramecter a so that the corresponding solution of
the dynamical model gives the best fit to data wusing a least-squares fit
criterion.

Abstractly, we have a state spacc H in which we solve a dynamical
system (S) for parameter dependent solutions wu = u(q) with the paramcters

chosen from some infinite dimensional set Q. If C: H - Z is a mapping

from the state space to the observation space Z, the problem is onc of

minimizing
(1.1 Ja,z) = |Cu(q) - 2
z
over q e Q, where IIZ is an appropriately chosen norm in Z.

The fact that many problems of interest arc infinite dimensional in both
statc spaces H and paramcter sets Q lcads to a rich class of mathcmatical

questions including well-posedness, stability, and computational approachcs. For
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example, consider the possibility of approximating the state spacc H by a
sequence HN of finite dimensional spaces and approximating thc paramecter
set Q by a sequence QM of finite dimensional sets so as to obtain

approximating problems: Minimize

(1.2) Ma2) = |cuNa) - z|”
y4

over q e QM where uN is an approximate solution to (S) lying in  HY An

important question concerns the ways in which QM approximating Q and

IR e s o o

HN approximating H might guarantee convergence of solutions G¢M of

the problems of minimizing JN over QM to a solution q of the problem of

Y r_—Y—V('IVV.

minimizing J over Q. A number of results [8], [27] in this area are availablc
and we just sketch one set of arguments here (for examples and more details,
see [8)])

Suppose that the scts Q and QM lie in some metric space 6 and that.
in fact, there is a mapping ™M Q - QM so that QM = iMQ). Further,

assume that the following hypotheses are satisfied by QM and HM™

(i) For any q* - q in Q we have CuNg*) = Cu(q) in Z as Nk - «

(11) For each N, the mapping q - JMq,z) is continuous in the Q
topology;

(iii) The sets Q and QM, for each M, are compact in the E) topology:

(iv) For cach q € Q, iM(q) - q in (~3 with the convergence uniform in

qe Q.
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Under these assumptions, let @™ be solutions for the problems for (1.2) and
let aN'M e Q be such that iM(aN'M) = a¥M From the compactness of Q.
we may sclect subscquences, again denoted by {aN'M} and {EN'M} so that &\'M
- q ¢ Q and g"M . g (the Ilatter follows from (iv)). The optimality of

=NM

Q guarantces that for every q e Q

(1.3) M@ Mz2) ¢ INiM(q).2).

Using (i) and (iv) and taking the limit as NM -+ o in this inequality yiclds
J(@.z) ¢ J(q,z) for every q € Q, or that Q is a solution of the problem for
(1.1). (Under uniqueness assumptions on the problems, one can actually
guarantee convergence of the entire sequence M in place of subscquential
convergence to solutions.)

We note that the essential aspects in the arguments sketched here involve
compactness assumptions on the sets QM and Q. Such compactness idcas play
a fundamental role in other theoretical and computational aspccts of these
problems. For example, one can formulate distinct concepts of problem

stability and method stability involving some type of continuous dependence of

solutions on thc observations z in Z, and use hypotheses similar to (i) - (v),
with compactness again playing a critical role, to guarantce stability. We¢

illustrate with a simple form of method stabilitv (other stronger forms arc also

amcnable to this approach).

We might say that an approximation method, such as that formulated

above involving Q™. HY and (1.2). is stable if

K]
J
g
d
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dist (@¥M(z"),a(z%) ~ 0

as NMk ~ 0 for any Z - 2° in Z, where G(z) denotes the set of all
solutions of the problem for (1.1) and ﬁN'M(z) denotes the set of all solutions
of the problem for (1.2). Here "dist" represents the usual distance set function.
Under hypotheses (i) - (iv) one can use arguments very similar to thosc
sketched above to establish that one has this method stability. If the sects
QM are not defined through a mapping M as supposed above, one can still
obtain this method stability if one replaces (iv) by the assumptions:

(v) If {gM) is any sequence with q" ¢ QM, then there exists q* in Q

(qu M - q* in the 6 topology;

and subsequence } with q
(vi) For any q € Q, there exists a sequencc {q4) with M ¢ QM

such that qM-' q in 6

Similar ideas may be employed to discuss the question of problem
stability for the problem of minimizing (l.1) over Q - ie. the orginal
problem and again compactness of the admissible parameter set plays a critical
role. For discussions of other questions related to problem stability, sece [19],
[21] - and specifically Remark 5.1 of [21]).

Compactness of parameter sets also appears to play an important role in
computational considerations. For example, in certain problems the formulation
outlined above (involving QM = IM(Q)) results in a computational framecwork
wherein the QM and Q all lie in some uniform set possessing compactncss
propertics. The compactness criteria can then be reduced to uniform

constraints on the derivatives of the admissible parameter functions. Wc¢ have
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numerical examples which show that imposition of these constraints 1is
necessary (and sufficient) for convergence of the resulting algorithms. (This
offers a possible explanation for some of the numerical failures of such
methods reported in the engineering literature -e.g. sce [37].).

Thus we have that compactness of admissible parameter scts play a
fundamental rele in a number of aspects - both thecoretical and computational-
in parameter estimation problems. This compactness may be assumed (and
imposcd) explicitly as we have outlined here, or it may be included implicitly
in the problem formulation through Tychonov regularization as recently
discussed by Kravaris and Scinfeld [25] In the regularization approach one
restricts consideration to a subset Q, of paramcters which has compact
imbedding in Q, modifies the least-squares criterion to include a term which
insures that minimizing scquences will be  Q; bounded and hence compact in
the original parameter set Q.

Having made a case for the role that compactness of admissible
parameter sets might play in parameter estimation problems, we turn finally to
the (not unrelated) focus of this note. In particular, we wish to discuss some
problems in which a variational formulation (as opposed to the semigroup
approximation framework we have used in many of our previous discussions of
these problems - see [3,4,5,7,12,13,17]) permits relaxation of the compactness
criteria nceded in convergence, stability and/or computational analvses. We
present scveral problems for which the variational framework can be used to
give convergence arguments in the spirit of techniques commonly used in the
finite-element approach (sce [22] and the rcfercnces thercin) to initial-boundary

value problems for partial differential equations. As we shall seec below, the
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"energy functionals” in our case are paramecter dependent and the arguments
can become¢ somewhat tedious in some instances.

In the next two sections we discuss problems for which the variational
approach offers an alternative to the semigroup formulation. However, therc
are some problems for which the semigroup approach is not readily employed
but for which a wvariational framework is rather natural We present two
su~h examples in Sections 4 and 5.

To facilitate our discussions, in some cases we restrict our remarks to
problems in which we minimize J and JN of (1.1) and (1.2) over a fixed set
Q. rclegating the role that approximating sets QM play to comments and
referring the reader to [8] for an explanation of how one readily extends the

ideas to problems of minimizing J¥ over QM where QM approximates Q.
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" II. A "1-D Seismic" Inverse Problem
. We consider the system
2.1) 022 L 00y tsoxen= oD
. — = — — > 0, x = (0,
W Bz ax J2 %y €
au
(2.2) —(t,0) + qau(t,O) = f(t)
axX
}
g‘ 2.3) % % 1) = 0
2. —(t,) + q, —(t,1) =
b ( at 94 ax (
F (2.4) u(0,-) = uy , u0,.) = v,

and the associated inversc problem of estimating 4, 4, Qg A [, given a

.'Y“’Tn AR A

set of observations (yij} for (u(ti.xj)).
Such problems arc motivated by certain versions of the so-called "I-D

Scismic Inversion Problem” (sce, ¢.g. [2]. [18]). Roughly spcaking. onc has an

ﬁavvvvw—x

elastic medium (e.g., the carth) with density aq, and elastic modulus a, A
perturbation of the svstem (explosions, or vibrating loads from spcciaily
designed trucks) near the surface (x=0) produces a source f for particic
disturbances u  that travel as elastic waves. being partially reflected duc to

the inhomogencous naturc of the medium. An important but difficult problem

T PP Py g p—

involves using the observed disturbances at the surface or at points along a

L . PREIR 3 B . . BN e e LT R
.. R . LT L L S P S L e N e .
PP o R W NP A S AN Wl PR Wl IO P A VI PRI VP W SR W P WP il o W S I W R A A




A rvrv_v‘i | g

.
L .l .

. t e s

B o P Lt e S e W (SR

. -t - BT T YR T Y - ey
'.‘,A"_.,L.A' Wy AN ._AL‘.-."-.J'-l---ﬂP_A\‘.“

"—. A S A A o ua Sine e i NI B s S A B B At Shah Anse Ban s aae 4 P . T Ty

T e e
R A T N S Y

-8-

"bore hole" to determine properties (representecd by parameters in the system) of
the medium. In the highly idealized 1-D “"surface seismic" problem, onc
assumes that data are collected at the same¢ point (x=0) where the original
disturbance or "source" 1is located. In addition to this hypothesis, other
unrealistic special assumptions are made about the nature of the traveling and
reflected waves. Although the standard 1-D formulations are far from reality,
exploration seismologists have developed techniques for processing actual field
data (performing a series of experiments and "stacking" the data) so that the
1-D problems are gencrally accepted as wuseful and worthy subjects of
investigation. Consequently, numerous papers (for some interesting refercnces,
scc the bibliographies of [2], [18]) on the 1-D problems can be found in the
rescarch literature.

In many formulations of the seismic inverse problem, the medium is
assumed to be the half-line x > 0 (with x = 0 the surface) while in others
(especially some of those dealing with computational schemes) one finds the
assumption of an artificial finite boundary (say at x = 1) at which no
downgoing waves are reflected ( an "absorbing" boundary). For the 1-D
formulation this condition is embodied in a simple boundary condition of the
form (2.3); here a, = ,/q—z(_lﬁmx—) and one can vicw this boundary condition
as resulting from factoring the wave equation (2.1) at x = 1 and imposing
the condition of "no upgoing waves" at x = 1.

Equation (2.1) is a 1-D version of the equations for an isotropic eclastic
medium while (2.2) represents an elastic boundary condition at the surface x
=0 (q; represents an elastic modulus for the restoring force produced by the

medium).

- R ) B .
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In the usual seismic expcriment, the medium is assumed initially at rest
so that wu, = vg = 0. While our analysis below can, with some tedium, be
extended to treat the case of parameter dependent initial conditions, we shall
assume that u, v, are given kuown functions.

For our discussions here, we shall also assume that the source term f s
1 to be estimated in some function space although frequently this term can be

parameterized in terms of a Euclidean set of paramecters, thus simplifying

i- somewhat the analysis. We shall also assume that qi(x) = 1 to facilitate
{

¢ our arguments (otherwise the analysis is somewhat more tedious and involves
[

! the use of paramecter dependent inner products).

k We reformulate the system (2.1)-(2.4) in variational or wecak form, sceking

a solution t - u(t) on O0<t ¢ T, with u(t) e H(Q) , satisfying

|
(2.5) <uy, ¢> + <q,Du,Dy> + S;L—) u,(t,1)4(1) - q,(0) [qsu(t,O) - f(t)]q;(O) =0
4

l for all ¢ e¢ H!(q), along with initial conditions
i
X (2.6) u(0) = uy , u0) = v, .

Here and throughout, unless othg¢rwise noted, < , > denotes the usual inner
product in H° = L? and D = gy The parameters q = (Qy Qg A f) arc

assumed to be in some subset of C() x R! x R! x C(0,T) , although as we

Lamas un an ey +

shall point out later, these smoothness requirements can be relaxed.
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The system (2.5) - (2.6) can, for the purposes of analysis, be abstractly
formulated using the state space H = R? x HQ) for states u(t) = (u(t,0),

u(t,1), u(t,.)). To be precise, define

V= {ntw) e H:n=w0), t =« ¢ e H@)

and, for V= (m,¢,v) in H , the operators My H - H, Ny H - H by

A A 1
Myv = (0,0,v) Nyv = (0, Szi_) £,0).

Qe

We also define the functionals a:V x V = Rl b(t): V - R! by

a(vV, §) = <q,Dv,Dy> - a,(0)azv(0)(0)

b = a0 ()0) .

Then we can rewrite (2.5) - (2.6) as
(2.7) Mgl 9o + <Niaoy + a(u(t)g) + b(t)g = 0

where ’f(t), 3; e V. We note that in this case the operators N, b(t) and

the functional a c¢ach depend on unknown parameters.

el PO
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Standard arguments [28, p.273] can be used to guarantec cxistence of

©= >

solutions u to (2.7), (2.6) satisfying U e C(0,T;V), Gt e C(0,T:H), €

tt
HO(O,T;V') with (2.7) being satisfied in a weak or distributional secnsc.
Furthermore, one can rewrite (2.7) as a first order system and usc semigroup
techniques to argue that, under additional smoothness assumptions on the
parameters and initial data, one obtains strong solutions that enjoy additional
smoothness properties. We shall return to these considerations below.

Turning to approximation and convergence arguments, we shall work with
our system in the form (2.5), (2.6) although we could equivalently use (2.7) in
our considerations. We consider Galerkin approximations on finitc

dimensional subspaces HY < HYQ), N = 1,2,.., and make the standing

assumption on the orthogonal projections PN: H%q) - HN.

T T e —

Assumption A: If ¢ ¢ H%Q), then PN¢ - ¢ in H®. For each ¢ ¢ H() ,

we have PNo - ¢ in HI,

If the observations for (2.1) - (2.4) for use in the least-squares functional

are given in pointwise form u(ti,xj) for the displacement or in an  H? sense

u(t,,-) for the strain, it suffices for the convergence and stability arguments
to argue that uN(t;qN) - u(t;q) in HYn) whenever qN - g in an
appropriatc sense, where uN  is the Galerkin approximation to the original
svstem (2.5), (2.6).

For paramcters @~ = (q) a3, al, %) in an admissible paramcter sct

Q , the approximating systems arc given by: Find uMt) ¢ HY satisfying for

all ¢ ¢ HN

-ta vt L
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ay(1)

ay

(2.8) <up¢> + <ay DuN,Dy> + uf(t, DU - a3(0) [aful(1,0) - N ]0)=0,

uM0) = PNy,

2.9)

n

-]
Z

<

u'(0)

Regarding the admissible parameter set Q we make the standing

assumptions:

Assumption B: The set Q is compact in the Q = C(@) x R! x R! x

HY0,T) topology and is contained in the set
{(Q2»Q3sq¢sf) EalQ2(x)>V>0»qS<—n<O,0<B‘Q4 (G}

for some fixed positive constants o«f,v.n.

Suppose then that ¥ - @ in Q , where ({(qV) is anv convergent

sequence in  Q, and let uM@M), u(@ denote the corresponding solutions to

(2.8), (2.5) respectively. Under Assumption A, we sec from the incquality

Mg - w@ L < IuN(qN) - PNu@ L + IPN u(@ - uw(@ |, ?
?

- ~ = - = -
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that it suffices to consider ZNt) = uMxgY) - PNu(t;5) and argue the
convergence Z%(t) » 0 in HY(n) for each t in [0,T).

Defining the "potential encrgy” functional & H! x H! - R! by

(2.10) &Q)d.») = <q,Do.Dy> - a,(0)a;0(0)440)

and the "boundary damping” functional B: H! x H' = R by

Ty

a (1)
; (.11 Ba)o#) = —— o(DUD)
8 4

we may use (2.5) (with q = @) and (2.8) in

N _ N N
<z > = <(uM - u + u - PTu), 4>

to obtain
<N + oqM)zNe) + B@ME| W
(212 = o@(uy) + B@u ) - Ha(PYue) - B@(PTuy)

v o<l - Pu, e + [62(0)7(0 - q:‘(O)er]\p(O)

DS
AR |
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for all ¢ ¢ HN In addition to this equation, 2" satisfies the initial

conditions (see (2.6) and (2.9))

(2.13) z80) = 0, z2%0) = 0.
Choosing ¢ = zN (which is in HN) in (2.12) and defining
(2.14) AM(u) = & @(u,zN) - o) (PNu,zN)
(2.15) 85t = @, () - al O

we obtain from (2.12) the equation

1 d

25 {1+ sahEN) ¢ M)

d
(2.16) = {aow} - aeu) + (1) 2} (1,0)

+ B@) (unz) - B@MPNu.zN) + <(1-PNu,.2N>.

If we further define the total energy functional




P

.ﬁttvt.w . 7,r7,,_ -
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E@)EY = 28] + s

and the auxilary expressions (for notational convenience)

a,(1) ay()
(2.17) (1) = —— u(41) - —— Puy(t,})
(2.18) 83 (1) = a5(0)ag PNu(t,0) - ,0)a,u(t,0)
(2.19) AN(t) = ,Du(t) - q)¥ DPNu(y),

then we can rewrite (2.16) as

%S

|

E(@™)(zN(v) + B(a"Nz}.zp)
d d N N N N
(2.20) = —AG) - AUy + — {(s3v) N0y } - s(1ZN(1,0)
+ 8Y(t)zN(t,1) + <1 - PMu

N
tt.’zt >,

We next observe that from Assumption B we have

v 2
B(a™Mz} 2¥) » N l2¥ (.0
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while the inequality bc ¢ hbz + pc? implies, with a proper choice of

constants,

sfozie « = [so]” + ¥ |an|

Using these inequalities in (2.20) we obtain

d
™ {;_ E(qM)(ZN(1) - ae(u) - 8§(1)2N(1,0))
(2.21)

[ 4 2
¢ - a0(uy) + o5 [8N0]" -sR0NL0) + <1 - PNz,

Integrating this expression and using the facts that A<>(u)|t=0 =0, z2N0) = 0,

and E(gN)(0) = 0, we thus find

(2.22) E@MEN (1) ¢ 28 &(u) + 26T ()zN(,0) + erN(:)dt
0

where GV is defined as the function on the right side of the incquality

wec employ the following set of inequalitics:

(2.21). Finally, to make use of this bound on the paramecter-dependent cncrgy,

TR T T e vy

el Bk PO PP PP

PPy
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20w ¢ =|aNw|® + 2o+ & [sY o]t + Mo,
26502400 ¢ Falsf|” + Mol

28000 )0 € & |a¥o) | + Yoo |+ Fleko |+ HNeo|’.
268020 ¢ g=sl ] + FlMeo]’

241 - PMu,, 2> ¢ (- PN |® + 2]

E@VMm) > |20 ]° + v]po |+ w]eo|

Then (2.22) may be replaced by

_ t_
(2.23) E@ZN(1) ¢ ™) + I E(zN(¢))d¢
0

where

(2.24) BN = [N |F+ 3 o]+ :'—" M0 °

and

(2.25) ™o = = [a%o]® + S]]+ Hsdo]® T Fne
22 =7 v ! 2 wn! 3 JO §)ag
with
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(2.26) Fo) = 5 [a%o|* + Slsv@] + olsho]’
N WO e O

Thus, from (2.23) and the Gronwall inequality, to establish that
I_i(zN(t)) -~ 0 (and hence that 2ZN(t) » 0 in H1(q)), it suffices to arguc that
Nt - 0 for each t in (0,T]. In view of the definitions (2.15), (2.17) -
(2.19), this convergence is easily argued under the Assumptions A, B (where
g8 - g in the Q topology) and that u(t) ¢ HYQ), u(t) e HYQ), u, e
Ho([O,T] x Q). To complete the discussions of this section, we¢ shall comment

on a number aspects of the above-outlined results in the form of scveral

remarks.

Remark 2.1 Recalling Assumption B, we note that the formulation above
rcquires the elastic moduli a, lie in C(Q) and that the compactness
properties of Q with respect to this component be in the C(Q) scnsc.
These are readily weakened by formulating the problem with the qa,
component replaced by  (q,(0), a,(1), q;) in R! x R! x L®(Q) - sece equation
(25) - with a corresponding change in the (3 topology emploved for the
compactness statement in Assumption B. This is especially useful if one wishes
to consider discontinuous elastic moduli (an important formulation in
“multi-layered” seismic problems) and the ease with which such modifications

are trecated in the variational framework above make 1t ideally suited for

convergence arguments when estimating discontinuous paramecters.
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Remark 2.2. In cases wherc the initial functions wu, v, of (2.6) also depend
on unknown parameters, i€, Uy = uy(q), vq = vo(a), then the initial conditions
(2.13) must be replaced by ZN0) = PMuy@™) - uy@] . zN(0) = PN[v (M) -
vo(@)]. The convergence arguments can be extended to this case if onc makes

appropriate smoothness assumptions on u, Vv, as functions of the paramecters

Q.

Remark 2.3 Assumption A, the fundamcntal approximation hypotheses on

HN | s readily shown to hold if one chooses either the standard piccewise
lincar or cubic splines as approximation ¢lements and hence these
approximation schemes are included as special cases in the above treatment.
The arguments and assumptions must be modificd slightly if one wishes to
{ include spectral familiecs such as Legendre polynomials. (One obtains the
* convergence PV¢ - ¢ in H! for ¢ ¢ H!T€ and Assumption A must bc
modified accordingly. This, in turn, requires that u(t),u(t) be in H*€  in

order to carry out the convergence arguments above.)

Laan e o o o g

Remark 24. The presentation here assumes that one is performing the
optimization in the lcast-squares fit-to-data over the admissible paramecter sct
? Q. In general, this is an infinite dimensional function space in the com-
poncnts q, and f. Thus one requires, as explained in Section 1, a second
approximation family QM and a double limit proccdure. Recalling our

discussions from Section 1, we¢ note that in the problems considered in this

L o e an o

-~

section it suffices to use the set Q = C() x R! x R! x HYQ) in thc com-

pactness and approximation statcments involving Q“ and Q.
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——

Remark 2.5, In the presentation above, we found that to guarantce the desired
convergence, it suffices to have u(t) and uy(t) in HYQ) and u,, ¢ H%(0,T]x0)
where u is the solution of (2.5), (2.6) corresponding to any limit paramcters

q in Q. Without further smoothness assumptions on the problem data onc

cannot readily guarantee this desired regularity for u. For example, if a,
e L%(0), uy e HY(), v, ¢ HYQ) and { ¢ H%0,T) , as we have alrcady obscrved

one can usc variational theory to guarantee existence of weak solutions with

LA e ahe 2

u,. ¢ HY%O,T; H!). 1If, however, we assume a, € H', uy ¢ H* v, ¢ H' and f

tt

e C!, then semigroup arguments similar to those given in [15] can be made to

obtain strong solutions with u(t) e H% u(t) ¢ H!, and u,, ¢ HY%[0.T]xQ). Thus.

q, in H! and sufficicnt smoothness on Up Vo [ will yield the desired
2 smoothness for convergence.
4

Remark 2.6. The problem considered in this section was also investigated in

{13] using a semigroup (Trotter-Kato approximation theorem) approach. Several
differences in the results arec noteworthy. First, wc¢ note that in the
variational framework above, the approximating (HN c H!(q)) basis elements
arc not required to satisfy parameter dependent boundary conditions (contrary
to the situation in [13]). Furthermore, the unknown source term { in the

boundary condition (2.2) can be treated directly here (in [13]., thc trcatment

required a transformation to a system with homogencous boundary conditions
and nonhomogecncous equation) and this relaxes the smoothness and compactness
‘. assumptions needed on the f component of Q. (A similar relaxation can
be obtained in the framework of [13] using a slightly different mecthod for
transforming the nonhomogeneity in the boundary condition to the system

3

|

.

; cquation.) In this regard wc also note that the approach in [13] requires

P T T T C T P S

BT T N LT O S LR S D . - AT P N . - ML L R
-_“)'A._.*_.'-‘h."A..‘....A.—AL._J-.“.-:J'A:A" 2 ) Lo i ca o at L. h‘L'A'L’..ZL'L‘-_'-_'L'L‘LRL!L'-'L"




MRS o sasa e ane . o nan

X

-21-
convergence qgl - q, in H}Q) as opposed to in C() (or R! x R! x L%q) -
scc Remark 2.1). Thus the rclated compactness assumption on the a,
component Q, of Q is rclaxed from H! to C compactness. This is
potentially important in scveral respects. The characterization of compactness in
C(n) is somewhat more natural (e.g. the Arzela-Ascoli lemma) than that in H!
(c.g. see the embedding lemmas in [1]). Furthermore, in cxtending the idcas
here or in [13] to treat estimation of discontinuous coefficients, compactness in
H! (or a piccewise H! compactness) is more awkward and tedious to
formulate than a concept of piecewise C or L® compactness. Finally, we note
that the modc of convergence required in the compactness of Q also dictates
the type of approximating families QM onec can use. We rccall that the

interpolation operators M

(see [13] [32]) for both pieccwise lincar and cubic
spline approximations satisfly ™(q) - g uniformly in q € Q 1in either C
or H! whenever Q < H2 However there are occasion where one might
desire to use the weaker convergence requirement (e.g. when dealing with

discontinuous coefficicnts and a piecewise C topology), in which the

variational formulation of the above presentation can prove advantageous.
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I11. _Large Flexible Structures

In one important class of parameter estimation problems (sce
[5,20,24,29,35]), one wishes to estimate structural parameters (stiffness, damping,
loading, etc.) in complex continuum models for elastic structures. The methods
discussed in this paper can be successfully applied to such problems. To
explain the approach, we consider a variable structure cantilevered damped
beam with a tip body and base acceleration. Such a model might be used for
example to describe the vibrations of shuttle attached payloads or large
flexible spacecraft members. To be more specific we consider an

Euler-Bernoulli beam of length 2 with viscoelastic damping (a Kelvin-Voight

solid) and tip mass m (instead of a tip body). Then the ecquations for
transverse (planar) vibrations in the presence of an axial force due to base

acceleration are given by

au
—, + = — — } + f,
9 at2 ax? {q2 ax? axzat} ax }
t>0,0<x <2,

a3 a’u a%u au
KAl Gl Al B 7S il | IR L

iu. + _afg_ - 0
[qz ax: | 03 ax’at]lx=l )

du
u(t,0) = ; (t,0) = 0

U(O,-) = 0 [} ut(ov') = \p
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) Here q, = p(x) is the linear mass density, a, = EI(x) is the flexural

rigidity or stiffness, q; = cpl(x) is the viscoelastic damping cocfficient, q,
= m is the tip mass, f is a distributed lateral load, and g is a
transversely applied force on the tip mass. The internal tension ¢ duc to

axial loading from base acceleration is assumed to be a known function of q,

= p,q,=m, and q; = a, = the base acceleration. From obscrvations of the
beam (displacement, velocity or strain), one might desire to estimate the
parameters q = (q,, Q5 Q3 Gy dg) = (p.Elcplimag) from a specified para-
meter set Q.

For such problems one can use a semigroup-Trotter-Kato approximation
formulation to develop computational procedures - e.g. see [5,26,31]. However,
some advantages are obtained in using a variational formulation (with “state”
G(t) = (u(t,-), u(t,p)) ) similar to that in (2.5), (2.6) or (2.7). This is done in
[6] and [15], [16] where detailed arguments for convergence are given. We shall
not discuss them further here, except to note that the wvariational approach
allows for a much weaker compactness criterion on the admissible parameter
sct Q. For example one can hypothcsize compactness in the C(0,2) norm
(or in the L®0,2) norm in a sensc similar tc that mentioned in Remark 2.1
above) with respect to the components representing  El and cpl. (Compare this

with the H? or H?weak compactness assumptions in (5] and [26].)

B pmm e
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IV. Bioturbation in Abyssal Sediments

In the previous two sections, we introduced problems (seismic and flexible
structures) for which one can investigate parameter estimation techniques using
either a semigroup formulation or a variational formulation. In this section

and the next, we mention briefly two other classes of problems which are not

readily treated with a semigroup formulation yet which can casily be analyzed
in a variational setting. We first turn to problems related to the estimation of
the effects of biological mixing in abyssal sediments.

Sediment formation in lakes and deep seas is of great importance to
geophysical scientists who use core samples of this sediment in their
investigations of the history of the earth. Unfortunately, the historical records
contained in these core samples are often perturbed by a phenomenon called
bioturbation {36] which is the mixing of sediments due to the activitics of
organisms near (on the order of 20-40 cm.) the sediment-water interface.
These activities consist primarily of burrowing (eg., for safety) and
ingestion-excretion and are not easily described quantitatively.

An important goal of some geologists is to understand (quantitatively)
bioturbation well enough so as to enable one to remove its effects and
properly interpret the data in core samples, thereby sharpening the details in
these geologic records. A number of increasingly sophisticated mathematical
models have been proposed and a brief review of a number of these is given
in {23]. Onc model of interest is the one proposed by Guinasso and Schink in

[23).
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Briefly, the mode¢l involves one-dimensional (depth) transport equations
for a moving chamber (assumed uniform in horizontal directions) in which
mixing and advective flow of material takes place. Depth in the chamber is
represented by coordinates x, 0 € x € L, and the chamber (and hence co-
ordinate system) is assumed to be moving upward with a velocity g, = q,(t)
[corresponding to sedimentation rate or build-up] so that it is always located in
the top L cm of the sediment, i.e., X = 0 is always at the
water-sediment interface. The bottom of the chamber x = L is located at
that depth beyond which (it is assumed) no further changes (i.e. no
bioturbation) in the historical records occur. If u = u(t,x) is the
concentration of material (e.g.,, shards of ash, tracer, etc.) with whose movement
one is concerned, a model based on mass balance in the chamber, Fickian flux

for the bioturbation, and appropriate boundary flux considerations is given by

du a du du
(4.1 —‘3T-=;;{ql(x)a—x-}-q2(t)a—x— t>0, 0<x<L,

a
(4.2) 0)(0) ——(80) + a,(VU(K0) = 0
du
(4.3) (L)~ (L) = 0 .

Here¢ q; is a depth dependent "bioturbation" coefficient.
To understand the effects of bioturbation on the distribution of

matcrial concentrations in core samples, it is sufficient then to know the

T qvi.‘rtv—.'r'rv'T-Y‘

|
|

.

Skod SRS A Bt

P WP




oA e Sha ae s B ASE Ave aun A Mo man Ay B S me e L0 -"P*

-26-
parameters q = (q,Q,4s) , 93 = L and, of course, know that use of thesc
parameters in the model gives one an accurate quantitative description of
concentrations found in core samples. Given observations from core samples,

this leads to a parameter estimation problem involving estimation of the

functions g, and q, and the chamber length q; In [17], it is shown how
to formulate and treat such problems in a discrete semigroup - Trotter-Kato
approximation framework if one assumes that q, is chosen from a class of
functions with finite dimensional parametric representation and a, is
independent of time. If one wishes to treat more general problems of

estimating x - q,(x) and t = q,(t) in general classes of functions, these arc

not so easily investigated using a semigroup sctting (note that (4.2) involves
time dependent unknowns). However, a variational formulation not unlike that
3 given in [10] provides an amenable framework in which convergence

ﬁ arguments can be given under rather weak compactness assumptions on the
admissible parameter sets. These arguments, to be given elsewhere, are similar
in spirit to those given in [10] for transport problems involving estimation of

' spatially and temporally dependent coefficients.
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V. Nonlinear Population Dispersal

In this section we turn to a brief discussion of estimation and a
variational formulation for problems that are typical of population dispersal
problems with transport coefficients (such as "diffusion" coefficients) that arc
density dependent. Nonlinearities of the general type we consider here arc
also important in porous media estimation problems.

Among the fundamental mechanisms often of interest to investigators in
population dispersal (see [9,11,14,30,33,34]) are (in addition to the usual
emigration-immigration, birth-death mechanisms): a dispersive mechanism
associated with random movement or foraging; an attractive or repulsive force
which induces directed movement of population members toward favorable or
away from unfavorable environmental surroundings; and a mechanism
representing population pressure due to interference between individuals in the
population. In mathematical models for transport including such mechanisms,
it is density dependent higher order terms that present difficultics in
theoretical (and computational) considerations. To illustrate how a variational
framework may be used for such problems, we shall sketch fundamental
convergence arguments for problems involving estimation of the paramcter
function q in simple models of the form

ﬁg

(5.1 2 (ac )au] t>0 Q = (0.1)
. = — X, u)— > U, X = L
at ax q ax €

(5.2) u(t.0) = u(t,l) = 0
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(5.3) u(0,.) = u,

T Ty

It's not difficult to extend the ideas to many of the more detailed modecls

v

(which include other desirable, but more easily treated mathematically,

transport terms) studied in [9,14,30,33,34]. While we shall formulate the
problem here in terms of estimating rather general "diffusion” coefficients g

in (5.1) from a rather broadly defined class Q , we actually have as basic

motivation the treatment of coefficients that are bounded below by
density-independent base values, that are saturation limited with rates that arc
affine as a function of density in the range between the base-value and
saturation thresholds. To be precise, our development has been motivated by

problems where ¢ - q(t,x,t) is continuous and has the form (see [14])

m(t,x) t ¢ §(tx)
(5.4) a(tx,g) = { ot,x) + B(t,x)E  Lo(t,x) € ¢ € L (t,x)
M(t,x) L,(tx) € ¢ .
\

In such problems we seck to estimate &B,§,0;, (which determines q in
(5.4) if the continuity assumption is invoked) from scts ABr,.T, respectively.
We shall sketch our idecas in terms of rather gencral conditions on the
parameter sct Q , noting that under appropriate assumptions on thc scts

A,B,ro,rl , the above example is included as a special casc.
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We first rewrite (5.1) - (5.3) in variational form, which consists of
finding wu(t) e HX(n) satisfying
(5.5) <u,g>  + <q(t,-,u)Du,Dy> = 0

for all ¢ e H)Q) along with initial conditions

(5.6) w0) = u, .

To define an approximate state system, we assume we have chosen a family of
finite-dimensional state spaces HN < H(I)(Q) with orthogonal projections PN :

Hé(n) - H¥ in the Hn) inner product. We also assumc¢ Assumption A of

Section 2 holds with H' replaced by Hj. The approximate systems are then

given by seeking (1) ¢ HN satisfying

(5.7) <ul 4> + <g(t,.,uM)DuN.Dy> = 0

for all ¢ € HY and

(5.8) uM0) = PNy, .

The paramecters q"¢ arc to be chosen from some admissible paramecter set Q.

In the usual manner (sce Scctions 1,2), for a convergence and stability analysis
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one desires to argue that q¥ - @ in Q implies uM@g") = u(@ for arbitrary
sequences {q\) in Q. The mode of convergence in Q is, of course, also the

sense in  which we wish to define “"compactness" of Q. In this

particular example, we assume Q "compact" in the following sense:

Assumption C: Any sequence in  Q has a convergent subsecquence (g}

with limit q in Q in the sense

(5.9) aX(t,-,v) - q(t,-.v)|_~ 0 in H(O.T)
for every v e L®(0).

In the case where Q consists of functions of the form given in (54), it is
straightforward to translate the compactness criteria of Assumption C into
easily verifiable compactness critcria on the parameter sets A,B,T..T,.

Further assumptions (again motivated by and easily verified for sects
containing functions of the form (5.4)) on Q are necessary for convergence

arguments and we therefore assume the following:

Assumption D: There is a constant v > 0 such that <q(t,-.v)Dy.Dy> 2

vigl? for every qe Q, vy e Hyn.

Assumption E: There is a constant M, > 0 such that |q(t‘-,\')\p|0 <

Mole], for all v e L®0), ¢ ¢ HAN), g € Q.
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Assumption F: There exists B e L®(0,T) x 1) such that |q(t.v ) - a(tx.m]

¢ B(tx)]t - n] for all tmne R' and all qge Q

We note that Assumption F implies existence of a constant K such that
lact,-.v) - a(t.-u)|, € K|v - u|, for all v.u e H%A).

We are now in a position to outline convergence arguments, for which it
suffices (in the usual manncr) to consider ) = uN(t) - PNut) where N
u , the solutions of (5.7), (5.8), (5.5), (5.6) corresponding to QN q. respectively,

where q¥ - @ in the sensc of (5.9) given in Assumption C and {q") is anvy

such sequence in Q.

From (5.5) - (5.8) we obtain Z2N(0) = 0 and

(5.10) <z} 9> = <q(t,-,u)Du - qN(t, - ,uM)DuN, Dy> + <(I - PMu 4>

for all ¢ ¢ HN. Choosing ¢ = zN in (5.10) and adopting the notation qv).

aN(v) for At,-,v), q™(t,-,v) throughout, we obtain
1 d 2 _
7 EIZNI = <q(u)Du - qNuMDuN,DzN> + <(I - PN)ut,zN>,

or

1 d

(5.11) ?E

2 _
|zN| + <MD D> = <gu)Du - qNuN)DPNu,D2ZN>

+ <(I - PN)ut,zN>.
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From Assumption D we immediately find

(5.12) -:—3—( llez + vlzN|: € <q(u)Du - qN(uN)DPNu,DzN> + %l(l - PN)utl2

1 2
NI
2

Considering the first term on the right side of this inequality we find (all

norms are the H° norm unless otherwise indicated)

(5.13) <q(u)Du - qNUMDPMu,DzN> = «(G(u) - qN(uv))Du,DzN>
+ <(@¥u) - qNuM)Du,DzN> + <gNuMD - PNu), DzN>
i - 2 v 2
< 5 |@w - a®wpul]® + 7 |2
2 v 2
5 | - a¥wMmu|® + ¥ D]
+ —la¥uMD - PM|* + Y|p2M|?

The terms in the right side of this incquality can be estimated (we usc

Assumptions E and F) as follows:

aNMD-PMu)| ¢ M,|D(u - PPu)

il |
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|@¥w) - a¥uMbu| ¢ |Du K| - w¥| ¢ |Dulk({[a - PYu| + |2N])
|@w) - a¥w)pu]| ¢ |Du| |a@) - a¥w]s

Using these estimates and (5.13) in (5.12), we obtain
a1 5L Gl ot

1 2 2
where p = 5 + Z—IV(— lDul and
@

2

. M 2 ,
GN®) = + [ - PMu | + Mo |pgu - péy|? + 2K [Du Iml(l - FNu

2

+ 5 [pu]” [aw) - awlo,

The remaining arguments are similar to those (integration, Gronwall, ctc.) of
Section 2. One easily obtains the convergence 2Z¥t) - 0 in HOQ) for each
t and, actually, considering again (5.14), the additional results Z¥ - 0 in
H®O0,T; H'()). Of course, appropriate smoothness (e8. u, e H°{0,T] x Q) . Du
¢ H%O0.T; L®(Q)) ) assumptions on the solution u must be invoked.

We remark that the ideas skctched  here readily extend to
multi-dimensional domains @ (see [10]) and that computational cfforts bascd
on the variational framcwork have in preliminary calculations (sce [14]) been

promising.
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